Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2637, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302557

RESUMO

The early diagnosis of Alzheimer's disease (AD) presents a significant challenge due to the subtle biomarker changes often overlooked. Machine learning (ML) models offer a promising tool for identifying individuals at risk of AD. However, current research tends to prioritize ML accuracy while neglecting the crucial aspect of model explainability. The diverse nature of AD data and the limited dataset size introduce additional challenges, primarily related to high dimensionality. In this study, we leveraged a dataset obtained from the National Alzheimer's Coordinating Center, comprising 169,408 records and 1024 features. After applying various steps to reduce the feature space. Notably, support vector machine (SVM) models trained on the selected features exhibited high performance when tested on an external dataset. SVM achieved a high F1 score of 98.9% for binary classification (distinguishing between NC and AD) and 90.7% for multiclass classification. Furthermore, SVM was able to predict AD progression over a 4-year period, with F1 scores reached 88% for binary task and 72.8% for multiclass task. To enhance model explainability, we employed two rule-extraction approaches: class rule mining and stable and interpretable rule set for classification model. These approaches generated human-understandable rules to assist domain experts in comprehending the key factors involved in AD development. We further validated these rules using SHAP and LIME models, underscoring the significance of factors such as MEMORY, JUDGMENT, COMMUN, and ORIENT in determining AD risk. Our experimental outcomes also shed light on the crucial role of the Clinical Dementia Rating tool in predicting AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Aprendizado de Máquina , Máquina de Vetores de Suporte , Diagnóstico Precoce , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico
2.
PLoS One ; 18(5): e0283712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37126509

RESUMO

The increasing incidence of Alzheimer's disease (AD) has been leading towards a significant growth in socioeconomic challenges. A reliable prediction of AD might be useful to mitigate or at-least slow down its progression for which, identification of the factors affecting the AD and its accurate diagnoses, are vital. In this study, we use Genome-Wide Association Studies (GWAS) dataset which comprises significant genetic markers of complex diseases. The original dataset contains large number of attributes (620901) for which we propose a hybrid feature selection approach based on association test, principal component analysis, and the Boruta algorithm, to identify the most promising predictors of AD. The selected features are then forwarded to a wide and deep neural network models to classify the AD cases and healthy controls. The experimental outcomes indicate that our approach outperformed the existing methods when evaluated on standard dataset, producing an accuracy and f1-score of 99%. The outcomes from this study are impactful particularly, the identified features comprising AD-associated genes and a reliable classification model that might be useful for other chronic diseases.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Estudo de Associação Genômica Ampla/métodos , Doença de Alzheimer/genética , Redes Neurais de Computação
3.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2700-2711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37018274

RESUMO

Alzheimer's disease (AD) is a type of brain disorder that is regarded as a degenerative disease because the corresponding symptoms aggravate with the time progression. Single nucleotide polymorphisms (SNPs) have been identified as relevant biomarkers for this condition. This study aims to identify SNPs biomarkers associated with the AD in order to perform a reliable classification of AD. In contrast to existing related works, we utilize deep transfer learning with varying experimental analysis for reliable classification of AD. For this purpose, the convolutional neural networks (CNN) are firstly trained over the genome-wide association studies (GWAS) dataset requested from the AD neuroimaging initiative. We then employ the deep transfer learning for further training of our CNN (as base model) over a different AD GWAS dataset, to extract the final set of features. The extracted features are then fed into Support Vector Machine for classification of AD. Detailed experiments are performed using multiple datasets and varying experimental configurations. The statistical outcomes indicate an accuracy of 89% which is a significant improvement when benchmarked with existing related works.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Neuroimagem/métodos , Máquina de Vetores de Suporte , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...